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a b s t r a c t

A three-layer feed-forward artificial neural network (ANN) was constructed and tested to model the
equilibrium data of hydrogen onto activated carbons containing different heteroatoms. The properties
of the activated carbons and the experimental conditions are used as inputs to predict the correspond-
ing hydrogen uptake at equilibrium conditions. The statistical validity of activated carbon properties in
discriminating the adsorbent type was carefully studied and validated. The constructed ANN was also
eywords:
ydrogen
dsorption
itch-based carbons
sotherm
rtificial neural network

found to be precise in modeling the hydrogen adsorption isotherms for all inputs during the training
process. The trained network successfully simulates the hydrogen sorption isotherm for the new inputs,
which are kept unaware of the neural network during the training process, thus showing its applicability
to determine the sorption isotherms for any operating conditions under the studied limits. The abso-
lute percentage deviation between the experimental and predicted data during the training and testing

be les
rinciple components
ercent deviation

process was observed to

. Introduction

Hydrogen energy is considered to be an alternative for fossil
uels as it is clean, it can be easily produced, it has high heating
alue and it is environmentally benign because its oxidation prod-
ct is water. The storage of hydrogen is a key issue especially in
n-board hydrogen storage when used on hydrogen based fuel cells
1]. Reversible adsorption of hydrogen onto carbonaceous mate-
ials has been attracting much interest which could be realized
rom the stimulating studies reporting on the hydrogen adsorp-
ion behavior of carbon nanotubes, carbon, graphite fibres, carbon
emplate, activated carbon, etc. [2–5]. Previous studies by sev-
ral researchers show that the storage capacity of these materials
s greatly influenced by the surface area, pore volume and pore
ize distribution. To enhance the low hydrogen uptake at room
emperature by physical adsorption several treatment methods
ncluding the deposition of metallic compounds onto activated car-

on surface have been reported aiming to increase the hydrogen
torage [4,6–8]. Deposition of metals and semi-metals can catalyze
r inhibit the reactions taking place during the pyrolysis and may
odify the structure of precursors and consequently the adsorp-
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s than 5% for most of the input conditions.
© 2010 Elsevier B.V. All rights reserved.

tive properties of the activated carbon. The storage capacity of
these materials is usually modeled or measured from the widely
used theoretical adsorption isotherms, which include Langmuir [9],
Freundlich [9,10], Dubinin–Raduskevich [11], Sips [12] and Toth
isotherms [9]. The effect of adsorbent properties on the storage
capacities is usually modeled with simple linear expressions. A lin-
ear empirical expression of type y = mx + c has been widely used
to correlate micropore volume, volume of narrow micropores and
BET surface area with adsorption capacity at specific operating con-
ditions (pressure or temperature). A linear relationship between
methane storage capacity and surface area of different materi-
als was reported by Sun et al. [13] for the adsorption at 3.5 MPa
and 298 K. Likewise, a linear relationship was observed between
the adsorption capacity for hydrogen and the specific surface area
of adsorbents made of different materials [14]. The same authors
reported a linear expression based on a plot of hydrogen adsorption
capacity versus micropore and mesopore volumes [14].

The activated carbons containing the heteroatom and the ref-
erence material reported in this study exhibit a linear relation
between total microporosity and narrow microporosity values [4].

Theoretical models can be successfully used to model or to repre-
sent the equilibrium uptake of hydrogen at a constant temperature
and a range of pressure conditions. Likewise the linear empirical
expressions can be useful while representing the effect of any one
of the adsorbent property (e.g. micropore volume) with the the-

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:vasath_vit@yahoo.com
mailto:vasanth_vit@yahoo.com
dx.doi.org/10.1016/j.cej.2010.01.059
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Fig. 1. Structure of the constructed three-layer back propagation network

retical sorption capacity of adsorbent. Any attempt to propose
correlation between the hydrogen storage capacity for a wide

ange of pressures, temperature and adsorbent properties would
e a difficult task using theoretical or empirical expressions.

Artificial neural networks (ANNs) could be an option for solv-
ng this type of complex problem since they were found to be an
xcellent option for solving many complex issues. ANN consists
f three layers: an input layer (containing input nodes), an out-
ut layer (containing output nodes) and a hidden layer (containing
idden nodes). The new information is fed into the network via

nput nodes. The activities of input nodes along with the weights on
inks between input and hidden nodes determine outputs of hidden
odes. ANN consists of an input layer and an output layer intercon-
ected by several nodes. ANN can rapidly process a large amount of

nformation and have excellent generalization capability for noisy
r incomplete data. ANN models are flexible and well-trained ANN
an perform well, where empirical modeling is suitable [15]. In
hemical engineering, neural networks was successfully applied to
redict the adsorption equilibrium and kinetics of solid/liquid sys-
ems [16,17], interfacial tension at crystal/solution interface [18],
dsorption of Pb(II) onto Antep pistachio [19], leachate flow-rate in
municipal solid waste landfill site [20], prediction of SO2 concen-

rations in a metropolitan area [21], estimating the water content
f natural gas [22], solubility of proteins [23], kinetics of photocat-
lytic water treatment [24], etc. To our knowledge, no studies have
een reported so far reporting the applicability of artificial neu-

al networks in predicting the adsorption isotherm of hydrogen
nto activated carbon containing different heteroatoms. ANNs are
sed to correlate the complex relationship between the input and
utput of any process irrespective of the physical meaning of the
ystem. ANN consists of input and output layers connected by sev-
raining strategy of the constructed feed-forward artificial neural network.

eral nodes. In the present study a feed-forward or back propagation
network with multiple layers was constructed to model the adsorp-
tion equilibrium of hydrogen onto an activated carbon containing
different heteroatoms for different operating conditions. The con-
structed network was tested with the new data which are kept
unaware of the neural network in order to check the applicability
of the network in predicting the hydrogen uptake at equilibrium
condition for new experimental conditions.

2. Methods

2.1. Pitch-based activated carbons

An aromatic petroleum residue (ethylene tar-R1) [25,26] was
mixed, individually, with four different compounds, triphenylsi-
lane (TPS), pyridine borane complex (PyB), tetrabutyl orthotitanate
(TBO) and ferrocene (FC) in an ultrasonic bath for an hour, to give
mixtures containing 2 wt.% of Si, Fe and Ti or 1 wt.% of B. All com-
pounds are apparently soluble in the petroleum residue. Pyrolysis
of the mixtures was performed at 440 ◦C, soak time of 4 h and 1 MPa
pressure, thus leading to pitches which contain the metal/semi-
metal: PSi, PB, PTi and PFe. A reference pitch P was also prepared.
The activated carbons PA, PSiA, PBA, PTiA and PFeA have been pre-
pared from the respective petroleum pitches as follows: KOH and
the pitch were mixed in a ball mill during 30 min with a impreg-

nation ratio of KOH/carbon of 3/1 and then thermally treated in
a horizontal furnace at 800 ◦C under nitrogen flow of 100 ml/min,
soak time of 2 h. Finally, the activated carbon was washed in a Soxh-
let apparatus for 24 h with water and dried at 110 ◦C for 24 h in a
vacuum stove.
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Fig. 2. (a) Correlation circle showing the discrimination power of activated c

.2. Equilibrium data and network inputs

The hydrogen adsorption isotherms for the pitch-based car-
ons containing Si, B, Ti and Fe were obtained from the adsorption
xperiments carried out using a homemade automatic volumetric
quipment, which features two pressure transducers covering the
ressure ranges 0–0.1 MPa and 0–10 MPa, respectively.

The characteristics of the prepared activated carbons which
nclude: () the % heteroatom content, pore volumes VN2 , Vmeso,
nd VCO2 and (i) the characteristics of the pitches which include
heteroatom content (experimental), % metal/semi-metal content

theoretical), % mesophase, aromaticity and the apparent height of
he stack (Lc) of mesophase are used as inputs, in addition to the
emperature and pressure conditions. The terms VN2 , Vmeso, and
CO2 refer to the total volume of micropores less than 2 nm, vol-
me of mesopores and the volume of narrow micropores less than
.7 nm, respectively [27]. The techniques used and characterization
esults are discussed elsewhere [4].

. Neural network modeling

In the present study a feed-forward network with three layers
as constructed to model and simulate the adsorption isotherms

f hydrogen onto pitch-based carbons containing different het-
roatoms. Multiple layer networks can approximate any function
ery well for the given inputs. Feed-forward ANN allows the infor-
ation signals to flow only in one direction, i.e., from input to

utput and adjusts the transfer function that is associated with the
nputs and outputs. In the present study, a network with one neuron
n the hidden layer was constructed initially and trained to simu-
ate the hydrogen sorption isotherms for different input conditions.
he detailed structure of the network and the training strategy of

he constructed neural network are given in Fig. 1. Fig. 1 shows
he feed-forward network with one hidden layer. P1 is the input
ector to the hidden layer, W1 and b1 represent the weight and
ias of the hidden layer. The information from the hidden layer is
ransferred to the output layer, as shown in Fig. 1. The term P2 rep-
properties. (b) Biplot discrimination of activated carbons containing metals.

resents the output vector and can be determined from the weight,
W2 and bias b2 of the output layer. In the present study a tansig
and a purelin functions were used as the propagation functions in
the hidden layer and in the output layer, respectively. The training
strategy of the network is shown in Fig. 1, where the input vectors
and the corresponding output vectors are used to train the network
until it approximates the propagation function. Thus, the bias and
the weights can be obtained from the training procedure, which is
based on the experimental data. In the present study, the data cor-
responds to the adsorption isotherms on five pitch-based carbons,
on four of which a chemical compound was dissolved that can cat-
alyze or inhibit the reactions taking place during the pyrolysis and
thus modify the structure of pitch and, consequently, the adsorptive
properties of the activated carbon. Thus considering these issues,
the difference in the properties of the pitch-based activated carbons
and the properties of pitches in which the chemical compounds
were dissolved are included as input parameters while constructing
the neural networks.

Selection of input variables is a critical part of neural network
design. It is possible to use a combination of own knowledge
of the problem domain, and standard statistical tests to make
some selection of variables before starting to use neural networks.
Alternatively, various combinations of inputs could be tried by
experimentally adding and removing input vectors, building new
networks for each [19,28] or this could be made by a sensitiv-
ity analysis [28]. In this study, the main objective is to make a
correlation of the properties of adsorbents and the experimental
conditions with equilibrium hydrogen storage using neural net-
works as this type model cannot be generated using a simple
regression analysis. Thus, in this study the physicochemical prop-
erties of the activated carbons and the experimental conditions,
pressure and temperature are assumed to be the input vectors.

The main objective of the manuscript is to provide a model using
neural networks to predict the equilibrium hydrogen uptake on
activated carbons differing in physicochemical properties as a func-
tion of temperature and pressure. In this study, the heteroatom
loading (actual and theoretical), mesophase content, aromaticity,
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tack height of mesophase molecules and mesogens of the pre-
ursor and the metal or semi-metal loading, VN2 , Vmeso and VCO2
f the prepared activated carbons are used as input vectors. The
xperimental conditions, temperature and pressure and the corre-
ponding equilibrium uptake of hydrogen onto the carbon particles
as defined as the output vector while training the neural network.

he significance of the physicochemical properties in representing
he adsorbent type was confirmed using a discriminant function
nalysis which will be discussed in the later sections.

The ability of the input vectors which are used to represent
he adsorbent type was analyzed by running a discriminant anal-
sis. Discriminant analysis was performed using a trial version of
Lstat, a freely available software. The correlation circle showing

he discrimination power of the inputs used in representing the
dsorbent type is shown in Fig. 2a. Fig. 2a shows that the first
wo main components, f1 and f2, enable to represent 78% of the
otal variability of the observed habits (Fig. 2a). The correlation cir-
le, where the position of each descriptor is f1–f2 space is plotted,
eveals that each descriptor brings significant information, as all
f them are well distributed in the circle. Fig. 2b shows that the
roperty of the adsorbent material was also capable to discrim-

nate the adsorbent material based on their sorption capacities.
ig. 2b shows that the adsorbents with relatively higher sorp-
ion capacities are on the left side of the graph and adsorbents
ith poor sorption capacities are on the right side. The sorp-

ion capacities of these adsorbents at 77 K and 298 K, as described
lsewhere [4], in decreasing order is PBA > PA > PFeA > PSiA > PTiA
nd PFeA > PA > PBA > PSiA > PTiA, respectively. The observations in
ig. 2a and b indicate that, the characteristic properties of the acti-
ated carbon and the precursor are equally important to represent
he adsorbent type.

The neural network toolbox Version 4 of MATLAB, Mathworks
nc., was used for simulation. The input and the target vectors were
ormalized before training to fall in the interval from 0 to 1 so
hat the mean and the standard deviation are 0 and 1, respectively.
he input conditions and the corresponding experimentally deter-
ined equilibrium hydrogen uptake concentrations were set as the

nput and the target vectors. The neural network was trained in
batch mode using a Levenberg–Marquardt’s algorithm strategy,
hich is sensitive to the number of neurons in the hidden layer.

he larger the number of neurons, the better is the performance of
he neural network in fitting the data. However, a larger number
f neurons in the hidden layer will sometimes result in overfitting
nd to avoid this a Bayesian regularization technique in combina-
ion with the Levenberg–Marquardt’s strategy was adopted to train
he network. The Bayesian algorithm works better when the net-
ork input and output are scaled within range of −1 to +1 [29]. In

he hidden layer, three types of transfer function, the exponential
igmoid, tangent sigmoid and linear functions were tested initially
hile training the neural network. The linear function was used at

he output layer. A tangent sigmoid function in the hidden layer
nd a linear function at the output layer was found to be excellent
n predicting the hydrogen sorption isotherms of pitch-based car-
ons containing different metals and physicochemical properties,

rrespective of the input conditions.
In this study, the network was trained initially with a Bayesian

egularization process as this type of training could eliminate the
uesswork necessary to determine the effective number of param-
ters while optimizing the network. Unfortunately, irrespective of
he several input combinations tried during the training process,
he network failed to converge while adopting a Bayesian regular-

zation procedure for the range of input conditions. The Bayesian
egularization worked better only when the temperature and pres-
ure are used as input vectors. However this network cannot serve
he purpose of the objective, as the network does not consider the
haracteristic properties of the different activated carbons stud-
ng Journal 159 (2010) 272–279 275

ied. To solve these problems, the network was trained using a
Levenberg–Marquardt strategy and regularized using a userstop
facility available in Matlab. The training process was stopped by
userstop when the sum of the squared errors, the sum squared
weights and the effective number of parameters (weights and
biases) are converging to a constant value.

As mentioned earlier, training by Levenberg–Marquart’s strat-
egy is subjected to the problems of overfitting and overtraining.
Overfitting occurs when too many neurons are in the hidden layer
and it can be estimated by the large error deviations between
the experimental and the ANN predicted hydrogen adsorption
isotherms for the new input data [30]. Overfitting refers to exceed-
ing the optimal size of the neural networks, which may reduce the
performance of neural networks in predicting the targets. Over-
training refers to the training time of neural network that will
reduce the performance of neural networks [30]. Overtraining of an
optimized network will sometimes lead to poor prediction of the
targets, as the network will memorize the training examples, but it
does not generalize to the new experimental conditions. Thus, the
network should be optimized to determine the effective number
of parameters and the training time to improve the robustness of
the neural network model. Thus, several trials were made using
Levenberg–Marquardt’s strategy while training the network. A
cross-validation approach with one testing set was used in parallel
while training the neural network. The neural network was trained
and tested in parallel for different number of neurons in the hidden
layer for the given input conditions. The network was trained for
123 experimental conditions and was cross-validated for 69 exper-
imental conditions in the training and testing set, respectively. The
trained network was also validated with 52 input conditions in a
second validation set, which will be discussed later. Thus in total,
the network was trained with 123 experimental conditions and
validated with 131 new inputs during the testing process. In this
study, the network structure was varied starting with one neuron
in the hidden layer and, after several trials, the ANN with 15 neu-
rons in the hidden layer was found to be successful in predicting
the targets both in the training and testing set.

In this study, the problem of overfitting was eliminated by
adapting the cross-validation technique. For cross-validation, a
testing set (first validation set) that contains new input conditions
that are not used during the training process was used. The prob-
lem of overtraining was avoided by using userstop while training
the neural network. Fig. 3a shows the plot for the mean squared
error between the experimental data in the first validation set and
the amount adsorbed predicted by the trained neural network and
the number of neurons in the hidden layer.

Fig. 3a also shows the plot of number of epochs due to userstop
while training the neural networks and it can be deduced that the
neural network with 15 neurons in the hidden layer performs well
in predicting the targets for the new inputs in the first validation
set. The mean squared error between the experimental hydrogen
uptake and the neural network predicted values for the new inputs
in the first validation set was determined to be 2.63 × 10−4 for
NH = 15, where NH represents the number of neurons in the hidden
layer.

In all cases the neural network adequately predicted the targets
in the training set. Fig. 3a shows that increasing the neurons >15 in
hidden layer affect the performance of the neural network in pre-
dicting the targets for the inputs in the first validation set. Though
the MSE between the experimental and ANN predicted isotherms
(Fig. 3a) are nearly the same for NH = 12 and 15, the performance

of network was relatively poor for the inputs in training set when
NH was set to 12 (not shown). Thus, the network with 15 neurons
was considered to be an optimum network structure in predict-
ing the targets the range of input conditions studied. The network
failed to converge when the number of neurons in the hidden layer
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a wide range of inputs in both training and testing sets, these out-
liers could be considered negligible. Neglecting the few outliers, the
lower percent deviation between nexp and nANN suggests that the
network is completely trained and is ready for prediction purposes.
ig. 3. (a) Mean squared error between experimental and neural network predic
quared error between experimental and neural network predicted equilibrium da
arbons.

as less than or equal to four. The best performance of neural net-
orks in predicting the targets for the new inputs in validation

et confirms that there is no overfitting. Fig. 3b shows the plot
etween number of epochs versus MSE between the experimental
nd the ANN predicted hydrogen sorption isotherms. Fig. 3b corre-
ponds to the performance of network for NH = 15, where it can be
bserved that the network was overtrained for epochs >5776. All
alues in Fig. 3b were obtained by userstop with the initial number
f epochs set to 30,000 during the training process. The MSE for
he training epochs <5000 are not shown as the visual observation
f the training plot at this condition showed that MSE was grad-
ally decreasing at this conditions. Stopping the training process
sing userstop at this condition may lead to results obtained from
network which is not completely trained. The details of the com-
letely trained neural network used in the present study to model
nd simulate the adsorption isotherms of hydrogen on pitch-based
arbons containing different metals are given in Table 1.

Fig. 4 shows the plot between the nexp and nANN values for the
tudied carbon adsorbents. nexp and nANN refers to the experimental
nd neural network predicted values for the sorption of hydrogen
nto carbon materials at equilibrium conditions. It can be observed
n Fig. 4 that the developed neural network was excellent in repre-
enting the equilibrium data, irrespective of the different properties

f carbon materials during the training process. The accuracy of the
onstructed neural network was verified from the percent devi-
tion between the experimental and predicted isotherms for the
arbon materials.

able 1
etails of trained artificial neural network for the storage of hydrogen onto pitch-
ased activated carbons containing different metals.

Type Value/comment

Input layer 11
Hidden layer 15
Output layer 1
Hidden layer function Tangent sigmoid
Output layer function Linear
Number of training epochs 5776
Number of data used for training 123
Number of data used for cross-validation 69
Number of data used for testing 52
uilibrium data as a function of number of neurons in the hidden layer. (b) Mean
function of training epochs for hydrogen sorption isotherm data onto pitch-based

Fig. 5 shows the plot of experimental data and % deviation
between the experimental and predicted isotherms for the given
input conditions during the training process. Fig. 5 also shows
the percentage deviation between the experimental and pre-
dicted isotherms for the inputs used for cross-validation. It can be
observed in Fig. 5 that the percent deviation between nexp and nANN
was found to be less than 5% for most of the input conditions in the
training and in the first validation set. Only for three input condi-
tions, specifically at lower pressure, the deviation of nexp and nANN
was found to be ≥ 10% during the training and cross-validation pro-
cess. Considering the performance of neural network globally for
Fig. 4. Plot between experimental and neural network predicted equilibrium sorp-
tion isotherm of hydrogen onto pitch-based carbon materials containing metals at
equilibrium conditions.
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ig. 5. Percent deviation between the experimental and predicted isotherms versus
xperimental data during the training and cross-validation process.

. Validation of the neural network model and testing
rocess

From the design point of view it would be helpful to use ANN
o predict the amount of hydrogen uptake by carbon materials
ontaining different heteroatoms for any operating conditions.
hus, the constructed network was used to simulate the adsorp-
ion system for new input conditions that are kept unaware of
he neural network during the training process. The capability of
he constructed neural network to predict the equilibrium uptake
f hydrogen for the new inputs will also help to identify the
obustness and performance of the constructed neural network. For
imulation purpose, two validation sets which contain the inputs

hich were not used in training process were used to predict the
ydrogen uptake capacity of the different carbon adsorbents. The
rst validation set here refers to the data set that is used during the
raining process for cross-validation.

able 2
ercent deviation between experimental and neural network predicted isotherms by neu

Pressure, MPa % Deviation Adsorbent Pressure, MPa % Devia

1.49 −18.51 PA 2 −6.74
2.52 0.85 PA 2.97 −0.63
3.50 −0.87 PA 3.99 0.91
4.50 0.24 PA 4.99 0.51
5.49 3.03 PA 5.99 −0.54
6.48 0.08 PA 6.99 −1.97
7.51 −0.05 PA 7.98 −0.68
8.48 1.08 PA 8.97 −0.19
9.47 −0.26 PA 9.77 −0.65

Pressure, MPa % Deviation Adsorbent

2.48 −2.42 PSiA
3.49 1.07 PSiA
4.47 −0.15 PSiA
5.50 −0.57 PSiA
6.47 −0.15 PSiA
7.49 0.33 PSiA
8.48 0.42 PSiA
9.47 −0.10 PSiA
Fig. 6. Experimental and neural network predicted isotherms at 77 K for the given
inputs in the second validation set.

It is worthwhile to mention that, a separate attempt was
initially made by constructing and training the network with
equilibrium data at 77 K and it was tested to simulate the
hydrogen uptake at 298 K. Unfortunately this network predicted
poorly the targets during the testing process. Thus, in this
study the network was trained and tested with the equilibrium
data obtained at 77 K and 298 K for the studied carbon materi-
als.

Fig. 6 shows the hydrogen experimental and ANN predicted
adsorption isotherms for the inputs in the second validation set.
Fig. 6 shows that the trained ANN predicted isotherms and the
experimental hydrogen sorption isotherms exactly overlap each
the constructed ANN successfully predicts the hydrogen sorption
isotherms for the new inputs in the first validation set which was
used for cross-validation. The capability of the trained network in
predicting the hydrogen sorption isotherm for the new input condi-

ral network during testing process.

tion Adsorbent Pressure, MPa % Deviation Adsorbent

PFeA 1.48 −7.58 PBA
PFeA 2.49 2.80 PBA
PFeA 3.48 0.83 PBA
PFeA 4.50 −1.19 PBA
PFeA 5.50 −1.19 PBA
PFeA 6.49 −1.44 PBA
PFeA 7.49 −0.19 PBA
PFeA 8.49 0.96 PBA
PFeA 9.47 0.92 PBA

Pressure, MPa % Deviation Adsorbent

0.97 4.11 PTiA
2 −4.39 PTiA
2.98 0.58 PTiA
3.99 0.21 PTiA
5 −0.27 PTiA
5.98 −0.45 PTiA
6.99 −0.53 PTiA
7.97 −1.26 PTiA
8.97 −0.27 PTiA
9.76 −0.67 PTiA
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ions suggests the robustness of the constructed model. Theoretical
r semi-empirical expressions correlating the uptake of hydrogen
t equilibrium conditions by carbon materials containing different
eteroatoms are not readily available in literature. However, the
NN reported in this work shows that the neural network would
e a useful tool to model the hydrogen sorption isotherm onto car-
on materials containing different heteroatoms for any condition.
n the present study, the neural network was constructed with very
ew data to model equilibrium hydrogen uptake at two different
emperatures. Irrespective of the very low data strength used as
nputs during the training process, the ANN performed correctly
or the input conditions. Table 2 shows the calculated deviation
etween the experimental data and the hydrogen uptake predicted
y the neural network for the input conditions in the second val-

dation set. It could be deduced from Table 2 and Fig. 5 that the
bsolute percentage deviation between the experimental and pre-
icted data during the training and testing process was less than 5%
or most of the input conditions. Thus, although proposing a purely
heoretical model correlating the sorption isotherm for a carbon

aterial containing different heteroatoms would be a very difficult
ask, the artificial neural network model trained with the physico-
hemical properties of these carbon materials presented here was
uccessful in solving this difficult task. Though the network was
rained with few input data, it is always possible to introduce new
nputs to train the network at any time when new experimental
ata are available. The intent of the future work is to predict the

sotherms of other compounds onto these carbon adsorbents. It is
lso intended to extend the application to model the kinetics of
ydrogen onto the same carbon adsorbents doped with different
eteroatoms.

. Conclusions

The application of an artificial neural network to model the
dsorption isotherms of hydrogen onto activated carbon contain-
ng different heteroatoms was discussed. A feed-forward neural
etwork with a hidden layer using a hyperbolic tangent prop-
gation function and with a linear output layer, was developed
nd trained to model the adsorption isotherms of hydrogen onto
itch-based carbons containing different heteroatoms. The neural
etwork trained with limited inputs was found to be accu-
ate in representing the experimental data of hydrogen onto
arbon materials. The absolute percent deviation between the
xperimental data and the predicted hydrogen uptake capac-
ty was found to be less than 5% during the training process,
rrespective of the input conditions. The constructed ANN suc-
essfully simulated the equilibrium hydrogen uptake for the new
nputs. The ANN was determined to be robust and sensitive to

wide range of input conditions during the training and testing
tages.

The present study is the first step toward the neural network
odeling of hydrogen sorption isotherms of activated carbons dif-

ering in physicochemical properties.
The ANNs have a number of advantages over the conven-

ional computational systems. The most important advantages are:
apacity of synthesizing complex and transparent mappings, rapid-
ty, robustness, fault tolerance, adaptability and small memory
equirement.

Though the neural network constructed in this study was based
n five different activated carbons, it is always possible to make
he constructed neural network more global for other adsorbents

y introducing new inputs whenever the new sources are available.
he future study is aimed to develop a more global neural network
odel that could simulate the equilibrium uptake of hydrogen for

ny sorbents based on the physicochemical properties of these
dsorbents and any experimental conditions.
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